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The SU2 x gn dual group algebra underlying Liouville NMR formalisms, which applies to 
extended spin cage-clusters [AI, of [AX], NMR spin systems, is briefly presented in terms of its 
mapping and superbosonic properties over the {IHIt, } specialised carrier subspaces. By consider- 
ing further both the origins of Liouville space as an augmented space based on inner tensor 
products of simple Hilbert space, and also the ASA-self-associate forms in terms of the contrast- 
ing structural aspects of the 8,12,16~n and 17,20~n Sn groups, it is shown that mixed 
boson/fermion sets of component irreps should only exist up to n ~< 16. This property is traced 
to the need for the symmetric group irreps to span a set of { [,~] : p ~< 22 } (gn) irreps corresponding 
to SU2 branching over the augmented SU2 x g~ spin space. Parallels are drawn with the more 
general quonic algebras over simple Hilbert space. 

1. I n t r o d u c t i o n  

In the context of  present interest [1,2] in quon(ic) algebras from the work of  
Greenberg [2], it is pertinent to bring to wider at tention the existence of  a further 
algebra in which fermion and boson aspects co-exist at least for some range of  sym- 
metric groups amenable to Z(gn) tabulation, namely that  for n~<16, 17. One is 
referring to the {Dk(U) x/~[~l(v)} irreps associated with dual SU2 x gn tensors 
[3,4], as bases implicit in the spin dynamical  evolution [5] of  N M R  spin clusters. 
These span a { [)~] } (gn; p ~ 22) set within a dual group algebra [6], as a consequence 
of  the inner tensor product (ITP) structure of  Liouville space. In this context, the 
SU2-simple reducibility over the carrier space(s) derives from the distinctness of  
the explicit SU2 v-recoupling aspects, now within the democracy imparted by the 
dual groups. The latter aspect derives from an extension of  the fundamental  boson 
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mapping concepts ofre£ [7] from the original simple Hilbert space into the (further) 
realm of Liouville space over tensorial bases [8]. 

In contrast to quonic algebras over simple Hilbert spaces [1,2], for these 
{ [~] } (g~) sets the co-existence ofboson and fermion components is a function of the 
n-degree of the symmetric group which defines the spin cluster NMR problem. 
Hence, it is convenient to refer to these algebras as being 'pseudo-quonic' in form 
over a limited n-degree range of the augmented spin space. 

2. An  outline of  the origin of  Liouville space properties 

From the mapping properties under SU2 x g~ of Liouville forms of carrier space 
[8], {l~v}, utilizing the rotation and projection operators pertinent to such a formal- 
ism, one obtains 

O x ~P(/~): 1t71I--+I~{Dk(U) x _?{al(v)lI)e SU2; :P(/~)e&} (1) 

for which it may be shown [6,8] that sets of distinct {I~} carrier subspaces 
exist, on account of the uniqueness of the fully explicit v-recoupling aspect in the 
expansion: 

I~ = ~--~ lITlI~,. (2) 
t /  

It is these aspects which both differ from the simple Hilbert space formalism of 
ref. [7] and which now ensure that the SU2 x gn algebras over Liouville space retain 
the property of simple-reducibility. A further general consequence of the mapping 
concept, applied over the augmented carrier subspaces, leads one to the conclusion 
that there exists an appropriate set of ladder (super)operators over a superboson 
space [9] defined on the additional augmented Heisenberg generator, 

7 2 [( i),(,~)1_ = 26ij, (3) 

as derived from the right-derivation property, i.e., on expanding this from a 
[~b, cd]_ commutator, whose superoperators, defined by ~C = [A, C]_, imply 
that ~1 =- 0. A brief indication of the nature of superboson algebras is given below 
to clarify the context and nature of these remarks. 

Underlying the natural structure of NMR cluster Liouville space is the intra- 
cluster-{JU} automorphic spin symmetry [10,11] of NMR cluster problems, in the 
higher gn limit in which NMR magnetic-equivalence is totally absent and with it 
any implication of reconstructive higher exclusively-unitary group aspects. Hence 
the Latin-square constructions derived from ITP processes [6b], utilising the simple 
Hilbert space properties that define the specific n-fold lain spin cluster of the 
[AX]n NMR system, yield the following general set with the upper bounds for the 
(SU2 x gn) ® (SU2 x gn) t direct product dual spin space being: 
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{[A]}(g, : 1 ~<p~22). (4) 

Here, p is associated with the A F- n partition structure and its (unitary) branching, 
as derived under standard ) dominance sequence ordering [12]. This equally 
applies to irrep branching. Here, it serves to define the persistence of these 
"pseudo-quonic" properties by affording a comparison with the structure of the 
self-associate forms for specific g, groups. 

The mathematical texts on combinatorial g,-algorithms, such as Sagan [12], or 
ref. [13], should be consulted for a fuller background to the properties of A F- n par- 
titions, g~-modules and the {Aa[,vl } Kostka coefficients associated with decomposi- 
tions of the latter. Their application to NMR dual group spin algebras [14] and its 
more general SU(m) x 8~ associated models for 8~ ~ ~ subgroup natural embed- 
ding are topics discussed in related papers [ 15,16]. 

3. The ladder-superoperators  algebra of  Liouville spin space 

The superboson (JZ)-algebra associated with superoperators Zu, defined over 
{ ]kqv))} bases of Liouville space, arises from mappings over {Nv} carrier subspaces 
[8,9], taking all upper(lower) components respectively throughout the following 
expressions, which constitute a consistent set of ladder superoperator properties 
for the augmented spin space: 

(~1 ~ 2) 

(,72,)1_ = ( ,2 ,1) .  
1 

[ z . ,  ( ,1,  2)]_ = 

(~ 1~ 2) 

I 

with any cross terms in (5a, 6a) vanishing, whereas 

= = 

2 2 2 2 

(s) 

(6) 

(7) 
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lead to mappings between the superbosons and the fundamental Wigner (super)- 
operators characterizing the structure of the carrier space, {I~,}. This is seen in the 
forms 

2 
{(J~)' (~'~2)' (J~)}--+ {((21 + 0 0))}, 

{ 0 0>>*} as I~>Q~> - 1 .  (8) {(512), -(? ~ 1), -(52)} -+ ( ( 2 1 _  Q , 

The standard realizations of {2-+, Z0,2-- } is retained in the sense that 

{ Z + , Z o , 2 - - }  =-- {J,]2, (7 , , , -52J2)/2, ,25,}.  (9) 

4. Conclusions 

O;a realizing these self-associate irreps for contrasting n ~< 20 gn groups as 

{[AsA]}(g20) {[52422],...}, 

( g , 8 )  - {[5431],...}, 
($17) {[55432],...} (10a) 

compared to the lower subset n ~ 16, 

{[44], [65231],...}(g16) 

{[4222], [53212],...}(~12) 

{[AsA]}(g,) = {[33], [5141}(g9) 

{[322], [4212]}($s) 

{[3211}(86) (10b) 

in which one notes the occurrence ofp ~< 4 part A F- n structure is limited to the latter 
subset. This observation serves to define the extent of the 'pseudo-quonic proper- 
ties'. For all g, above $16, the SU2 × 8~ algebra over Liouville space reverts to an 
exclusively bosonic form, typical of the initial mapping ofeq. (1). 

Hence, the distinction and resemblance of the above Liouville space algebra to 
more general quonic algebras [1,2] over simple Hilbert space has been clarified by 
finding the bounds to the 'pseudo-quonic' 8, (Liouvillian) algebras from the nature 
ofg~ self-associate irrep structures. 

The Z(gn) structures of these higher 8n algebras for 12~n~< 18 may be found in 
the work of Ziauddin [17] and others [18], whilst the principal character of 8, has a 
rather general realization for all n, based on a combinatorial construction, i.e. the 
hooklength. 
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Finally, applications of gn modules, and similarly derived models for gn + ~ sub- 
duced spin algebras, to NMR spin cluster problems has been stressed in several 
recent works [15,16]. 
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